

Saisonale Wärmespeicher

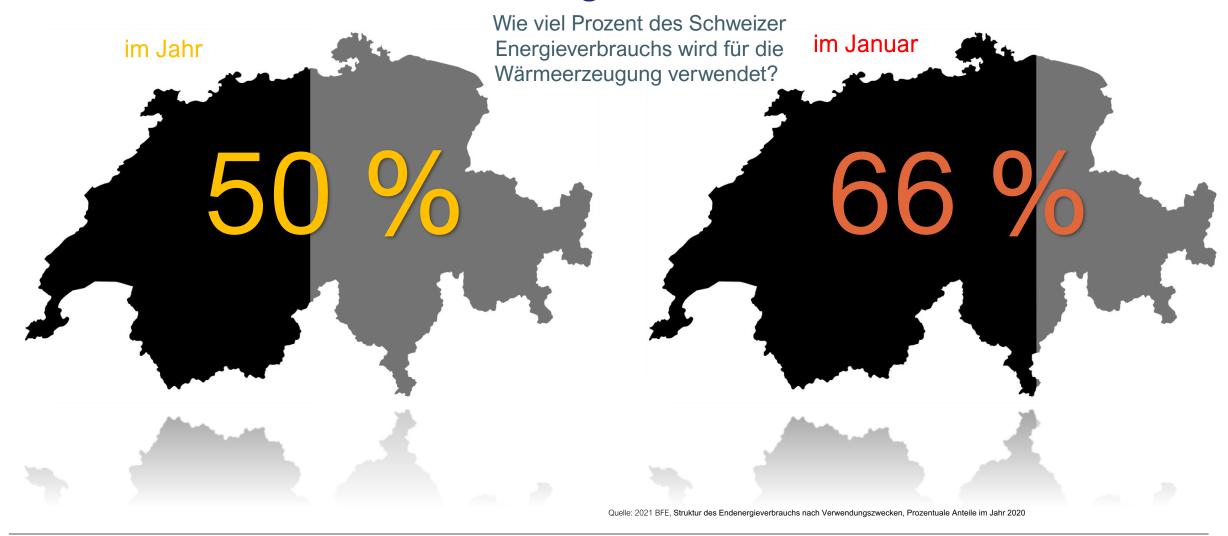
Eine wichtige Komponente in unserem fossilfreien Gesamtenergiesystem

Dr. Michel Haller, FH Ost, Dr. Luca Baldini ZHAW, Stefan Brändle Amstein+Walthert AG

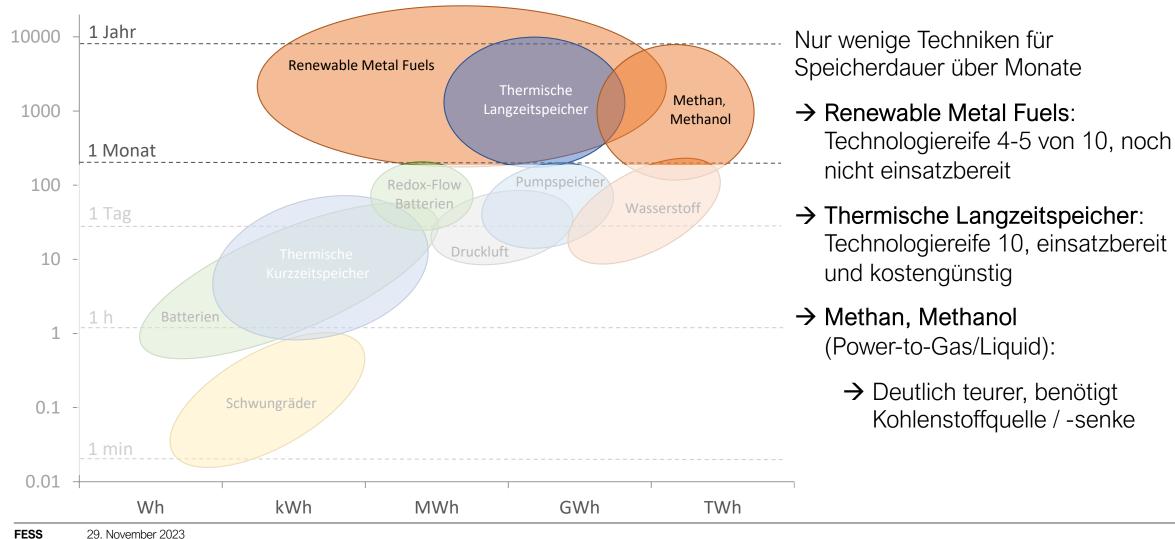
energie

Noch nicht gedeckter Winterstimbedarf 2050: 10 TWh

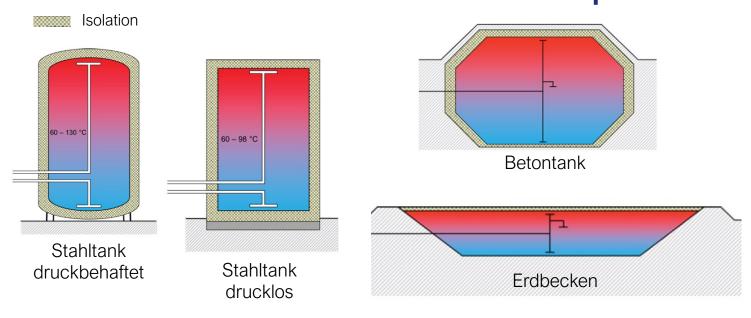
Reduktion um 40 % = 4 TWh

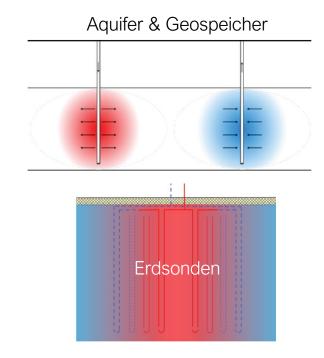

Jährliche Einsparungen

300-400 Mio. CHF


Technische Lösungen

vorhanden


Anteil Wärme an Endenergie



Bei der Langzeitspeicherung haben wir nicht viele Optionen

Was ist ein saisonaler Wärmespeicher?

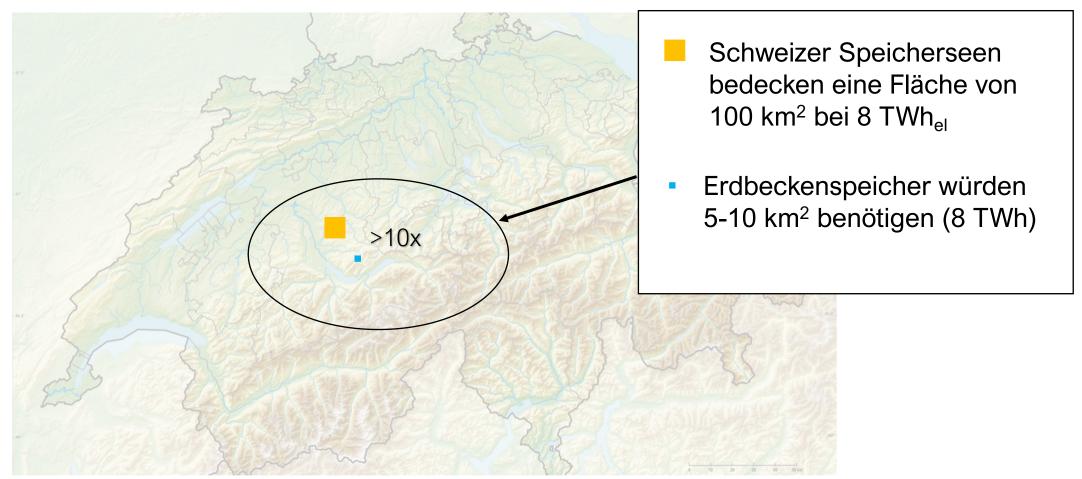
Stahltank druckbehaftet
Stahltank drucklos
Erdbecken oder Betontank
Aquifer oder Erdsonden

Erdbecken-Wärmespeicher: Beispiele

Dronninglund, DK 62'000 m³ ~ 3.6 GWh

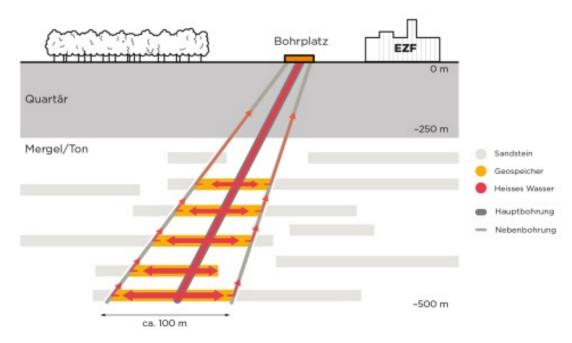
Vojens, DK: 200'000 m³ ~ 12 GWh

Meldorf, DE: 45'000 m3 ~ 2.4 GWh

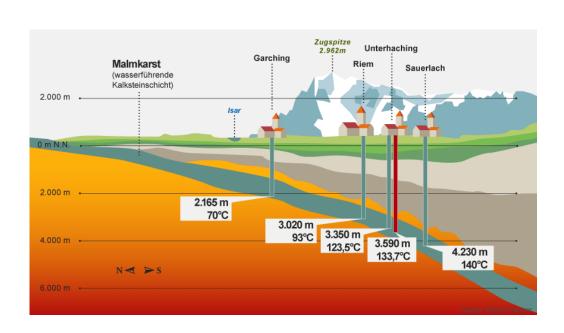

Investitionskosten: ca. 30 CHF/m³

0.5 CHF pro kWh Kapazität

4 Rp pro kWh Umsatz (20 Jahre, Zins 5%)


Quellen: NIRAS Aalborg, Thomas Labda / LinkdedIn, Solarheateurope

Fläche < 10% der Fläche der Speicherseen... ... für die gleiche Energiemenge



Bildquelle: https://de.wikipedia.org/wiki/Datei:Reliefkarte Schweiz3.png

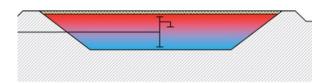
Aquifere und Geospeicher: Beispiele

Geospeicher ewb Forsthaus - Bern: 500 m Tiefe: 60 – 90 °C 12 – 15 GWh

Je nach Standort und Tiefe auch höhere Temperaturen möglich

Queleln: ewb und https://www.br.de/themen/wissen/geothermie-voralpenland104.html

Hindernisse und Chancen: generell


→Zuständigkeit:

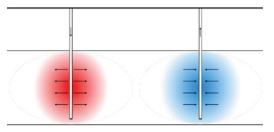
- → Wärme -> Kantone (status quo)
- → Fernwärme und grosse Wärmespeicher: nationale Spielregeln würden helfen
- → Raumplanung
- →Gewässer- und Grundwasserschutz
- → Förderung neuer Techniken / Anschubfinanzierung
- → Systemdienlichkeit belohnen

Bild: Wikipedia / TUBS

Hürden – Erdbecken

- → Brauchen Platz, sind sichtbar, Anbindung an Wärmenetz
 - → In Innenstädten schwierig -> Agglomeration oder ländliche Wärmenetze
- → Raumplanung:
 - → Sondernutzungszonen schaffen
 - → Umzonungen erleichtern (nationales Interesse, Versorgungssicherheit)...
 - → Landwirtschaftliche Flächen = Kulturlandverlust?
 - → Frühzeitige Planung und Einbezug aller Stakeholder
 - → Beispiel Österreich: 13.5 Mio Euro Fördergelder für grosse solarthermische Anlagen & Wärmespeicher

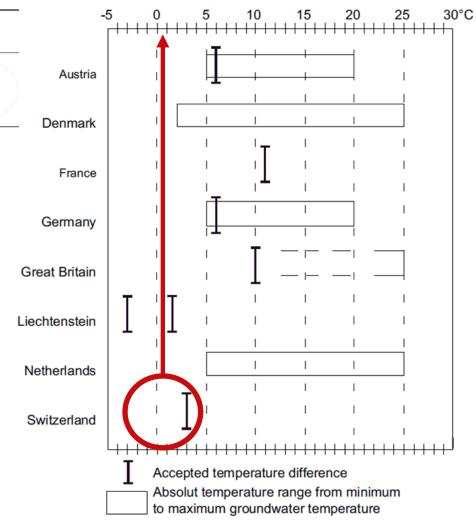
Beispiel Sondernutzungszone Kies-Abbau...


Beispiel Wasserspeicher für Beschneiungen

(Bilder: Ilu AG, Horw, Josef Wanner/Grafik Oliver Marx; Südostschweiz.ch)

Hürden – Aquifere / Geospeicher und Erdsonden

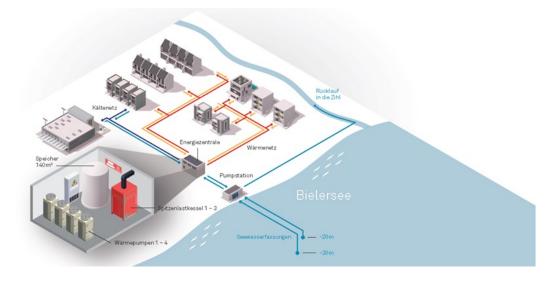
→ 3 K Regel:


→ Temperatur des Grundwassers darf ausserhalb des Nutzungsperimeters nicht um mehr als 3 K verändert werden

- → es fehlt eine wissenschaftliche Grundlage für diese Anforderung
- → Andere Länder sind deutlich grosszügiger (fortschrittlicher?)

→ 10% Regel:

- → max. 10% Grundwasserfluss-Beeinflussung
- → Referenz unklar Klarheit schaffen
- → Wissen über den Untergrund weiter ausbauen


Hürden – Innenstädte / dichte Überbauung

- → In Innenstädten können kaum Erdbecken-Speicher gebaut werden
 - → Aquifere und Geospeicher ja
- → an Flüssen oder Seen… +/- alle grossen Städte
 - → Fluss- und Seewassernutzung über Wärmepumpen
 - → Forschung und Entwicklung:

 Bubble-in-the-lake (https://www.bils.tech/)

 auf höheren Temperaturen

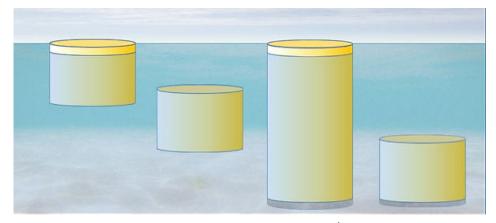


Bild: ©/Quelle: ESB & www.bils.tech

Mantelerlass Energie- und Stromversorgungsgesetz

e-parl 29.08.2023 18:05

- → Thematisiert vor allem Strom (fast) niemand spricht über Wärme, obwohl extrem wichtig
 - → Wärme MUSS auf die nationale Agenda gebracht werden!
- → fokussiert auf die Stromversorgungssicherheit im Winter
 - → diese ist über Sektorkopplung (Wärmepumpen, BHKW) verbunden mit der Wärmeversorgung
- → Energieeffizienz im Gebäudebereich wird anerkannt
 - → Nicht berücksichtigt wird bisher das Potenzial der saisonalen Wärmespeicherung

Wasser-Speichersee für Beschneiungsanlagen (Skipisten)

FESS 29. November 2023

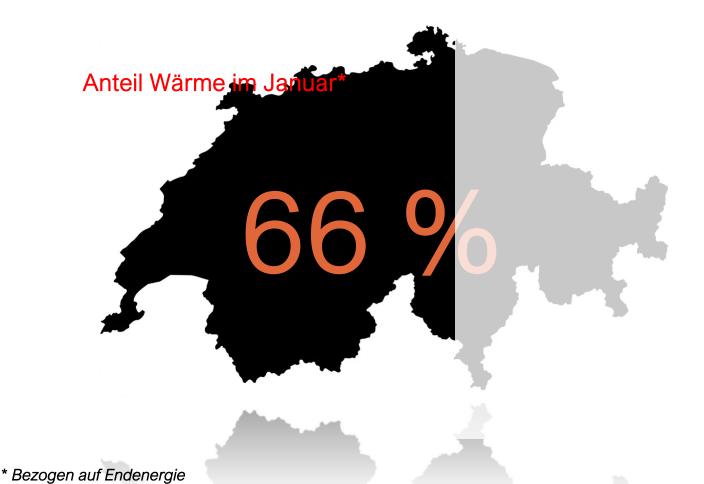
Notwendige Schritte

Integration von saisonalen Wärmespeichern in Energieperspektiven erforderlich

Realisierung und Förderung konkreter Projekte saisonaler Wärmespeicher in der Schweiz

Anpassung der Rechtsvorschriften zum **Grundwassererwärmung**

Koordinierte Raum- und Energierichtplanung zur optimalen Berücksichtigung von Infrastrukturen zur saisonalen Wärmespeicherung


Entwicklung geeigneter
Instrumente zur Förder-ung
und Vergütung von
saisonaler
Wärmespeicherung

Wissen und Kenntnisse über den Schweizer Unter-grund müssen verbessert werden

FESS 14

Take Home Messages Saisonale Wärmespeicherung in der Schweiz

Reduktion nicht gedeckter Winterstrombedarf 2050

40 %

Jährliche Einsparungen

300-400 Mio. CHF

Technische Lösungen

vorhanden

Danke für's Zuhören

Zürcher Hochschule

FESS

29. November 2023

Hinweis Veranstaltungen und Projekte

<u>Kursmodul Energiespeicher</u> – Theorie und Anwendung, vier Tage im Mai 2024

11th Symposium Thermale Energy Storage, 26th Jan. 2024, HSLU CC Thermal En. Storage

Innosuisse Flagship project SwissSTES - Swiss Seasonal Thermal Energy Storage Action Plan and Implementation (lead: ZHAW, <u>Luca Baldini</u>)

FESS 29. November 2023